Review for exam 3

Exercise 1. Find f(x) for

1. $f'(x) + x - \sqrt[4]{x}, f(1) = 1.$

2.
$$f'(x) = \frac{3+2x}{\sqrt{x}}, f'(1) = 0.$$

3. $f''(x) = 5\sin x - 3\cos x$, f'(x) = 1, f(x) = -3.

Exercise 2. Find the vector $\overrightarrow{r}(t)$ that gives the position of a particle at time t having the acceleration $\overrightarrow{a}(t) = \langle 2t, 3 \rangle$, $\overrightarrow{v}(0) = \langle 1, -1 \rangle$ and initial position (1, 2).

Exercise 3. Find the point on the hyperbola xy = 8 that is the closest to th point (3, 0).

Exercise 4. If 1200cm^2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

A farmer with 600ft of fencing wants to enclose a rectangular area and then divide it into 6 equal pens (see figure below). What is the largest possible area of the 6 pens.

Exercise 5. A piece of wire of 10 inches long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is maximum? minimum?

Exercise 6. Let $f(x) = \frac{\ln x}{\sqrt{x}}$

- 1. Find the intervals on which f is increasing or decreasing?
- 2. Find the local minimum, local maximum values of f.
- 3. Find the intervals of concavity and the inflection points.

Exercise 7. Let $f(x) = x\sqrt{x+1}$.

1. Find the intervals on which f is increasing or decreasing?

- 2. Find the local minimum, local maximum values of f.
- 3. Find the intervals of concavity and the inflection points.

Exercise 8. Let $f(x) = 2x + \cot x, \ 0 < x < \pi$.

- 1. Find the intervals on which f is increasing or decreasing?
- 2. Find the local minimum, local maximum values of f.
- 3. Find the intervals of concavity and the inflection points.

Exercise 9. $f(x) = \sqrt{x^2 + 1} - x$.

- 1. Find the asymptotes.
- 2. Find the intervals on which f is increasing or decreasing?
- 3. Find the local minimum, local maximum values of f.
- 4. Find the intervals of concavity and the inflection points.

Exercise 10. $f(x) = x^5(x-1)^6$

- 1. Find the intervals on which f is increasing or decreasing?
- 2. Find the local minimum, local maximum values of f.
- 3. Find the intervals of concavity and the inflection points.

Exercise 11. Find the absolute maximum and absolute minimum values of f on the given interval.

1. $f(x) = \frac{x}{x+1}$, [1,2] 2. $f(x) = \sqrt{9-x^2}$, [-1,2]. 3. $f(x) = x^2 - 2x + 2$, [0,3]. item $f(x) = \frac{\cos x}{2 + \sin x}$, [0, 2π].

Exercise 12. Find the critical numbers of $f(x) = |x^2 - 1|$. **Exercise 13.** Find the critical numbers of $f(x) = \sqrt[3]{x^2 - x}$. **Exercise 14.** Find the following limits

1.
$$\lim_{x \to 0} \frac{6^x - 5^x}{x}$$
.

2.
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.$$

3.
$$\lim_{x \to 0} \frac{\sin x}{e^x}.$$

4.
$$\lim_{x \to 0} \left(\frac{2x + \operatorname{Arcsin} x}{3x - \operatorname{Arctan} x}\right).$$

5.
$$\lim_{x \to \infty} e^{-x} \ln x.$$

6.
$$\lim_{x \to \infty} \sqrt{x} \ln(x).$$

7.
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1}\right).$$

8.
$$\lim_{x \to 0} (\sin x)^{\tan x}.$$

9.
$$\lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{5x}.$$

10.
$$\lim_{x \to \infty} (e^x + x)^{1/x}.$$

Exercise 15. Simplify the expressions

- 1. Arctan $\left(\tan\left(\frac{6\pi}{5}\right)\right)$
- 2. $\cos(\operatorname{Arcsin} 0.1)$.
- 3. $\sec(\operatorname{Arctan} 2)$.
- 4. $\tan(\operatorname{Arccos} 0.5)$

Exercise 16. Find the derivative of $f(x) = \operatorname{Arctan}(\sin x)$ and simplify.

Exercise 17. Find the domain and the derivative of $f(x) = \operatorname{Arccos}(\operatorname{Arcsin} x)$.

Exercise 18. Find the domain and the derivative of $\operatorname{Arccos}(e^x)$,

Exercise 19. Find the domain and the derivative of $\operatorname{Arcsin}((1-x^2))$

Exercise 20. Find $\lim_{x\to 0^+} \operatorname{Arctan}(\ln 3x)$.

Exercise 21. Find $\lim_{x \to \infty} \operatorname{Arccos}\left(\frac{2x-1}{2x+1}\right)$. **Exercise 22.** Find $\lim_{x \to \infty} \operatorname{Arcsin}\left(\frac{x-1}{x+1}\right)$.

Exercise 23. Polonium-210 has half life of 140 days.

- 1. If a sample has a mass of 200mg, find a formula for the mass that remains after t days.
- 2. Find the mass after 100 days.
- 3. When will the mass be reduced to 10mg?

Exercise 24. A bacteria culture starts with 400 bacteria and after 3 hours there are 3200 bacteria.

- 1. Find an expression for the number of bacteria after t hours.
- 2. Find the number of bacteria after 4 hours.
- 3. When will the number of bacteria reach 10,000?

Exercise 25. A roast turkey is taken from an oven when its temperature has reached $185^{\circ}F$ and is placed on a table in a room where the temperature is $75^{\circ}F$.

- 1. If the temperature of the turkey is 150°F after half an hour, what is the temperature after 45 min?
- 2. When will the turkey have cooled to 100° ?

Exercise 26. Evaluate

1. $\log_2(64)$, $\log_8(32)$.

2.
$$\log_3(9^{\sqrt{3}})$$

3. $e^{\ln(2)} + \ln(e^{\sqrt{2}})$

Exercise 27. Find the domain and solve the equations

- 1. $\ln(2e^x 1) = 3$
- 2. $\ln(x) + \ln(x-1) = \ln(.5)$
- 3. $\log_2(\log_3(\log_4(x))) = 0$

4.
$$\ln\left(\frac{x-2}{x-1}\right) = 1 + \ln\left(\frac{x-3}{x-1}\right)$$

Exercise 28. Find the derivative of

1. $f(x) = \sqrt{x} \ln(x)$ and state the domain.

2.
$$g(x) = \ln\left(\frac{x^2 \sin x}{(\operatorname{Arctan} x)\sqrt{x^2 + 3}}\right)$$

- 3. $f(x) = \ln(\sec x + \tan x)$ and simplify.
- 4. $f(x) = x^{\ln(x)} (\ln x)^x$.
- 5. $h(x) = (\sin x)^{\cos x}$

Exercise 29. Using the logarithmic differentiation, find the derivative of

$$f(x) = \sqrt{\frac{(\cos^6 x)(e^{3x^2})\sqrt{x^5 - 1}}{(2x+1)x^{2/5}}}$$

Exercise 30. Find y' if $y = \ln(x^2 + y^2)$.