Section 1.1 Vectors

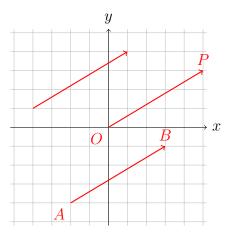
1 Vectors

Definition: A vector is a quantity that has both a direction and a magnitude (length).

Example:

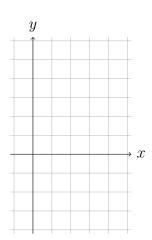
- •
- •

•



Exercise 1. Let

A(1,2), B(3,5), C(4,1).



- Find the components of \overrightarrow{AB} .
- Draw the position vector of \overrightarrow{AB} .
- Find the magnitude of \overrightarrow{AB} .
- Find the component of \overrightarrow{BC} .
- Draw the position vector of \overrightarrow{BC} .
- Find the magnitude of \overrightarrow{BC} .

Theorem: Let $A(x_A, y_A)$ and $B(x_B, y_B)$ be two points and $\overrightarrow{u} = \langle x_u, y_u \rangle$ be a vector.

• The components of \overrightarrow{AB} are

$$\overrightarrow{AB}\langle x_B - x_A, y_B - y_A \rangle$$
.

• The magnitude of the vector \overrightarrow{u} , written $||\overrightarrow{u}||$ or $|\overrightarrow{u}|$, is

$$||\overrightarrow{u}|| = \sqrt{x_u^2 + y_u^2}.$$

• The magnitude of the position vector \overrightarrow{OA} is

$$\left| \left| \overrightarrow{OA} \right| \right| = \sqrt{\left(x_A\right)^2 + \left(y_A\right)^2}.$$

• The magnitude of the vector \overrightarrow{AB} is

$$\left| \left| \overrightarrow{AB} \right| \right| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}.$$

2 Operations on vectors

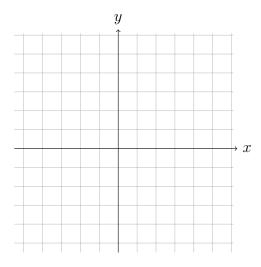
Definition: Let $\overrightarrow{a}\langle x_a, y_b \rangle$ and $\overrightarrow{b}\langle x_b, y_b \rangle$ be two vectors, and c a real number,

Then

- $\overrightarrow{a} + \overrightarrow{b}$ is the vector with coordinates $\langle x_a + x_b, y_a + y_b \rangle$.
- $c \overrightarrow{a}$ is the vector with coordinates $\langle cx_a, cy_b \rangle$.

Exercise 2. let $\overrightarrow{a} = \langle 2, 3 \rangle$, and $\overrightarrow{b} = \langle 1, 2 \rangle$ be two vectors. Plot the vectors

$$\overrightarrow{u_1} = \overrightarrow{a} + \overrightarrow{b}, \quad \overrightarrow{u_2} = \overrightarrow{a} - \overrightarrow{b}, \quad \overrightarrow{u_3} = -\overrightarrow{b}, \quad \overrightarrow{u_4} = 2\overrightarrow{b}, \quad \overrightarrow{u_5} = \frac{1}{2}\overrightarrow{a}, \quad \overrightarrow{u_6} = 2\overrightarrow{a} - 3\overrightarrow{b}$$



Theorem: The $\overrightarrow{a} \neq \overrightarrow{0}$ be a vector. Any scalar multiple vector

- has the same direction as \overrightarrow{a} if c > 0.
- has the opposite direction as \overrightarrow{a} if c < 0.
- The magnitude $||c\overrightarrow{a}|| = |c| ||\overrightarrow{a}||$.

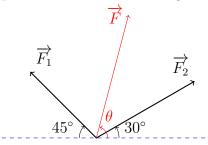
Definition:

$$\mathbf{i} = \langle 1, 0 \rangle, \qquad \mathbf{j} = \langle 0, 1 \rangle$$

Exercise 3. Find a unit vector that has the same direction as $\overrightarrow{a} = \langle 2, 3 \rangle$.

Exercise 4. Let $\overrightarrow{u} = 3\mathbf{i} + 4\mathbf{j}$. Find a vector \overrightarrow{v} such that \overrightarrow{u} and \overrightarrow{v} have opposite directions, and $||\overrightarrow{v}|| = 2$.

Exercise 5. (27p54) Two forces $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$ with magnitude 10lb and 12lb act on an object at a point P as shown in the figure. Find the resultant force \overrightarrow{F} acting at P as well as its magnitude.



Exercise 6. (30p54) Ropes 3m and 5m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg. The ropes fastened at different heights, make angles 52° and 40° with the horizontal. Find the tension in each wire and the magnitude of the tension. (Note: gravity exerts a downward force of 5(9.8)=49N on a 5-kg mass.)