Section 6-2

Theorem: Let f be a continuous function on $[0, \infty)$ and f'(t) be a piecewise continuous function on $[0, \infty)$ with both of exponential order α . Then for $s > \alpha$,

$$\mathcal{L}\left\{f'\right\}(s) = s\mathcal{L}\left\{f\right\}(s) - f(0)$$

Exercise 1. Prove the Theorem.

Exercise 2. Find the Laplace transform of e^{ax} where a is a real number.

Theorem: Let f(t), f'(t), \cdots , $f^{(n-1)}(t)$ be continuous on $[0, \infty)$ and let $f^{(n)}(t)$ be a piecewise continuous function on $[0, \infty)$, with all these functions of exponential order α . Then for $s > \alpha$, $\mathcal{L}\left\{f^{(n)}\right\}(s) = s^n \mathcal{L}\left\{f\right\}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0).$

Exercise 3. Write an expression for the Laplace transform of the second derivative.

Exercise 4. Find the Laplace transform of $\sin 2x$.

Exercise 5. Let y be a solution to the initial value problem

$$y'' - 4y = 1$$
 $y(0) = 0$, $y'(0) = 1$.

Find the Laplace transform of y.

Definition: Given a function F(s), if there is a function f(t) that is continuous on $[0, \infty)$ and satisfies

$$\mathcal{L}\left\{f\right\}(s) = F(s)$$

then f(t) is the inverse Laplace transform of F(s), written $f = \mathcal{L}^{-1} \{F\}$.

Solve the previous initial value problem.

Exercise 6. Find the inverse Laplace transform of $F(s) = \frac{3s^2 + s}{(s+1)(s-1)^2}$.

Laplace Transform Formula:			
	f(t)	$\mathcal{L}\left\{f\right\}\left(s ight)$	
	1	$\frac{1}{s}$	
	e^{at}	$\frac{1}{s-a}$	
	t^n $n=1,2,\cdots$	$\frac{n!}{s^{n+1}}$	
	$\sin bt$	$\frac{b}{s^2 + b^2}$	
	$\cos bt$	$\frac{s}{s^2 + b^2}$	
	$e^{at}t^n$ $n=1,2,\cdots$	$\frac{n!}{(s-a)^{n+1}}$	
	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$	
	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$	
$\mathcal{L}\left\{e^{at}f(t)\right\} = \mathcal{L}\left\{f(t)\right\}(s-a)$			
$\mathcal{L}\left\{f'\right\}(s) = s\mathcal{L}\left\{f\right\}(s) - f(0).$			
$\mathcal{L} \{ f'' \} (s) = s^2 \mathcal{L} \{ f \} (s) - f'(0) - s f(0).$			
$\mathcal{L}\left\{f^{(n)}\right\}(s) = s^{n}\mathcal{L}\left\{f\right\}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$			
$\mathcal{L}\left\{t^n f(t)\right\}(s) = (-1)^n \frac{\mathrm{d}^n F}{\mathrm{d}s^n}(s).$			

Exercise 7. Solve the initial value problem

$$y'' + 6y' + 5y = 12 e^t$$
, $y(0) = -1$, $y'(0) = 7$

using Laplace transforms.

Method of Laplace transforms: To solve an initial value problem:

- 1. Take the Laplace transform of both sides of the equation.
- 2. Use the properties of the Laplace transform and the initial conditions to obtain an equation involving the Laplace transform of the solution.
- 3. Determine the Laplace transform of the solution $\mathcal{L} \{y\}$ by solving the previous equation for $\mathcal{L} \{y\} (s)$.
- 4. Determine the solution by taking the inverse Laplace transform of $\mathcal{L} \{y\}$.

Exercise 8. Solve the initial value problem

$$w'' + 4w = 2t$$
, $w(0) = 1$, $w'(0) = -1$

Exercise 9. Find a solution to the initial value problem

$$y'' + 3ty' - 6y = 1,$$
 $y(0) = 0,$ $y'(0) = 0$

Exercise 10. (24p325) Solve the initial value problem

$$y'' + 4y = \begin{cases} 1, & 0 \le t < \pi \\ 0 & \pi \le t < \infty \end{cases} \qquad y(0) = 1, \quad y'(0) = 0$$