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Exercise 1. Find the radius R of convergence of the power series

S(x) =

∞∑
n=1

x4n−1

4n

and evaluate the sum S(x) at any x in the open disc of convergence (−R,R).
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Exercise 2. Determine whether the integral ∫ ∞
0

t5

(t4 + 1)
√
t
dt

is convergent.

3



Introductory Real Analysis
Math 328, Summer 2015

University of Washington
c©2015, Dr. F. Dos Reis

Exercise 3. Given the function

F (x) =

∫ ∞
0

e−xt

1 + t2
dt

1. For which values of x, F is convergent?

2. Prove that F is continuous on [0,∞).
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Exercise 4. Assume that f is a continuous function on R and lim
x→−∞

f(x) = −1 and lim
x→∞

f(x) = 1, prove that

there exists a real c such that f(c) = 0.
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Exercise 5. Prove that if f is uniformly continuous on [a, b] then f is integrable on [a, b].
This is theorem 60, you may use any theorem metioned above theorem 60
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1 Power Series

1.1 Radius of convergence

Definition 1. A power series is a series of functions in the form f(x) =

∞∑
k=0

anx
n.

Theorem 2. Given a power series f(x) =

∞∑
n=−

anx
n, if there exists x0 such that the series f(x0) is convergent,

then for any x such that |x| < |xo|, the series f(x) is absolutely convergent.

Theorem 3. Given a power series f(x) =

∞∑
n=0

anx
n, exactly one of the 3 statements is true

• f is convergent only for x = 0. We say that the radius of convergence is 0.

• f is convergent for any x. We say that the radius of convergence is infinite.

• there exists a positive real R, called radius of convergence such that

– if |x| < R, then the series is absolutely convergent.

– if |x| > R, then the series is divergent.

Theorem 4. Let f be a power series f(x) =

∞∑
n=0

anx
n.

If the limit lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ exists or is infinite, then the radius of convergence is R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣.
1.2 Uniform convergence of power series

Theorem 5. Let f be a power series with a positive or infinite radius of convergence R.
For any 0 < r < R, the power series is uniformly convergent on [−r, r].

Theorem 6. Let f =

∞∑
n=0

anx
n be a power series with a positive or infinite radius of convergence R.

The series f is continuous on the open interval (−R,R).
Moreover, for any a and b in the open interval (−R,R),∫ b

a

f(x)dx =

∞∑
n=0

an

(
bn+1 − an+1

n+ 1

)

1.3 Differentiability of power series

Theorem 7. The power series f(x) =

∞∑
n=0

anx
n and g(x) =

∞∑
n=1

nanx
n−1 have the same radius of convergence.

Theorem 8. Let f =

∞∑
n=0

anx
n be a power series with positive or infinite radius of convergence R.

Then f is differentiable at any point in open interval (−R,R) and its derivative is f ′(x) =

∞∑
n=1

nanx
n−1.

By induction, f is differentiable infinitely many times on the open disk of convergence.

And, an =
f (n)(0)

n!
.
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Theorem 9. If f(x) =

∞∑
n=0

anx
n be a power series with a positive radius of convergence, then an =

f (n)(0)

n!

Theorem 10. If

∞∑
n=0

anx
n =

∞∑
n=0

bnx
2 on a neighborhood of 0, then for any n, an = bn.

1.4 Product and quotient of power series

Definition 11. If f(x) =

∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n are 2 powers series with 2 positive radius of convergence

Ra and Rb, Then the product of the power series is a power series h(x0 =

∞∑
n=0

cnx
n with cn =

∑n
k=0 akbn−k

Its radius of convergence R is greater of equal to min(Ra, Rb).

Theorem 12. Given 2 power series f(x) =

∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n with b0 6= 0, then

∑
anx

n∑
bnxn

can be

represented by a power series
∑

cnx
n.

To find the power series
∑
cnx

n, you may use a long division or notice that
∑

anx
n =

(∑
bnx

n
)(∑

cnx
n
)

.

The latest method leads to a triangular system of equations

a0 = b0c0 =⇒ c0 = · · ·
a1 = b0c1 + b1c0 =⇒ c1 = · · ·

...
...

an = b0cn + b1cn−1 + · · ·+ bn−1c1 + bnc0 =⇒ cn = · · ·

A third method involves the geometric series formula

∞∑
n=0

xn =
1

1− x
.

For example, the function
1

1 + x2
can be represented by the power series

1

1 + x2
=

∞∑
n=0

(−1)nx2n.

1.5 Inferior limit, superior limit

Definition 13. Given a sequence un,

lim
n→∞

xn = lim
n→∞

(sup {xk; k > n})

limxn = lim
n→∞

(inf {xk; k > n})

Example: If xn = (−1)n
(

1 +
1

n

)
, then limxn = 1 and limxn = −1

Theorem 14. Given a power series f(x) =
∑∞
n=0 anx

n, then its radius of convergence R satisfy

1

R
= lim
n→∞

|an|1/n

Example: The radius of convergence of the series

∞∑
n=0

xn
2

2n
is 1.
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1.6 Analytic function

Definition 15. Let f be a real valued function defined on (a, b) such that f has derivative of all order at any
point x in (a, b).

The function f is analytic on (a, b) is for any x0 in (a, b), there exists a neighborhood of x0 such that

f(x) =

∞∑
k=0

f (n)(x0)

n!
(x− x0)n

on the neighborhood of x0.

Example

• ex =
∑∞
k=0 is analytic on R. Using Euler formula, cosx. sinx, tanx are analytic on R.

• 1

1− x
is analytic on (−∞, 1), and on (1,∞).

Therefore Arctanx is analytic on R, ln(1 + x) is analytic on (−1,∞)...

• The function x5/2 is not analytic at 0 since x5/2 does not have derivatives of all orders.

• The function f(x) =

{
0 x = 0

e−1/x
2

x 6= 0
has derivatives of all order at x = 0.

All the successive derivative at x = 0 are 0.

The Taylor series of f , Tf , is 0. On any neighborhood of f , the Taylor series Tf and f are different
functions. Therefore f is not analytic at 0.

Theorem 16. Let f be a function defined on (a, b) such that f has derivative of all order on (a, b) and
f (n)(x) > 0 at any x ∈ (a, b).

Then f is analytic on (a, b).

Theorem 17.

ex =

∞∑
n=0

xn

n!

1

1− x
=

∞∑
n=0

xn

cosx =

∞∑
n=0

(−1)n
x2n

2n!
ln(1 + x) =

∞∑
n=1

(−1)n−1
xn

n

sinx

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
Arctanx =

∞∑
n=0

(−1)n
x2n+1

2n+ 1

2 Improper integrals

2.1 Improper integral of the first kind and of the second kind

Definition 18. Improper of the first kind
Let f be an integrable function over every finite intervals [a, c] for a < c.

• The improper integral of the first kind

∫ ∞
a

f(x)dx is defined by

∫ ∞
a

f((x)dx = lim
c→∞

∫ c

a

f(x)dx

if the limit exists.
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• If the limit exists, the improper integral is convergent.

• If the limit does not exists, the improper integral is divergent.

Definition 19. Improper of the second kind
Let f be a function on [a, b), integrable over every finite intervals [a, c] for any c, a < c < b.

• The improper integral of the second kind

∫ b

a

f(x)dx is defined by

∫ b

a

f((x)dx = lim
c→∞

∫ c

a

f(x)dx

if the limit exists.

• If the limit exists, the improper integral is convergent.

• If the limit does not exists, the improper integral is divergent.

Theorem 20.

∫ 1

0

tαdt is convergent for α > −1.∫ ∞
1

tαdt is convergent for α < −1.

2.2 Improper integral with non negative integrand

Theorem 21. Let b be a finite real number or b is infinite.
Let f be a non negative function integrable on any interval [a, c] for a < c < b.

The improper integral
∫ b
a
f(t)dt is convergent iff F (x) =

∫ x
a
f(t)dt is bounded for x ∈ [a, b).

Theorem 22. Let b be a finite number or b is infinite.
Let f and g two non negative functions, integrable on any interval [a, c] for a < c < b.
Assume that for any t ∈ [a, b), f(t) 6 g(t)

• If

∫ b

a

f(t)dt is divergent, then

∫ b

a

g(t)dt is divergent.

• If

∫ b

a

g(t)dt is convergent, then

∫ b

a

f(t)dt is convergent.

Theorem 23. Let b be a finite number or b is infinite.
Let f and g to positive functions, integrable on any interval [a, c] for a < c < b.

If lim
x→b

f(x)

g(x)
= L 6= 0 (L is a finite number), then

∫ b

a

f(t)dt and

∫ b

a

g(t)dt are both convergent or both

divergent.

3 Absolute convergence

Definition 24. Let b be a finite number or b is infinite.
Let f be a function integrable on any interval [a, c] for a < c < b.

The integral

∫ b

a

f(t)dt is absolutely convergent if the integral

∫ b

a

|f(t)|dt is convergent.
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Theorem 25. Let b be a finite number or b is infinite.
Let f be a function integrable on any interval [a, c] for a < c < b.

If the integral

∫ b

a

f(t)dt is absolutely convergent, then

∫ b

a

f(t)dt is convergent.

Theorem 26. Let f and Φ be 2 functions such that

• f is continuous on [a,∞) and F (x) =
∫ x
a
f(t)dt is bounded on [a,∞).

• Φ is differentiable, Φ′ is continuous on [a,∞) and limt→∞ Φ(t) = 0

Then

∫ ∞
a

f(t)Φ(t)dt is convergent.

3.1 Functions defined by improper integrals

We consider functions defined by
∫ b
a
f(x, t)dt where b is a finite number or b =∞.

Definition 27. • The integral

∫ b

a

f(x, t)dt is convergent for x in an interval I if ∀x ∈ I, lim
c→b

∫ c

a

f(x, t)dt

exists and is

∫ b

a

f(x, t)dt i.e.

∀x ∈ I,∀ε > 0∃c0, if b > c > c0, then

∣∣∣∣∣
∫ c

a

f(x, t)dt−
∫ b

a

f(x, t)dt

∣∣∣∣∣ < ε

• The integral

∫ b

a

f(x, t)dt is uniformly convergent on the interval I if

∀ε > 0∃c0, if b > c > c0, then ∀x ∈ I

∣∣∣∣∣
∫ c

a

f(x, t)dt−
∫ b

a

f(x, t)dt

∣∣∣∣∣ < ε

Theorem 28. If for any x ∈ I, for any t ∈ [a, b), |f(t, x)| 6 g(t) and
∫ b
a
g(t)dt is convergent then

∫ b
a
f(x, t)dt

is uniformly convergent.

Theorem 29. Let f(x, t) be a function continuous of the 2 variables on I × [a, b). If

∫ b

a

f(x, t)dt is uniformly

convergent, then
∫ b
a
f(x, t)dt is a continuous function of x on the interval [a, b).

Theorem 30. Let f(x, t) be a function continuous of the 2 variables on I × [a, b). If

∫ b

a

f(x, t)dt is uniformly

convergent, then for any m and M in I,

∫ M

m

∫ b

a

f(x, t)dt =

∫ b

a

∫ M

m

f(x, t)dt

Theorem 31. Let f(x, t) be a function continuous of the 2 variables on I × [a, b).

• If F (x) =
∫ b
a
f(t, x)dt is convergent.

• ∂f

∂x
exists and is continuous of the 2 variables on I × [a, b).

•
∫ b

a

∂f

∂x
(x, t)dt is uniformly convergent on I

then F (x) =

∫ b

a

f(t, x)dt is differentiable on I and F ′(x) =

∫ b

a

∂f

∂x
(x, t) dt.
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3.2 Gamma function

Definition 32. The Γ function is defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Theorem 33. • The function Γ is convergent on (0,∞).

• For any x > 0, Γ(x+ 1) = xΓ(x).

• A consequence of the previous property: for any n ∈ N,Γ(n) = (n− 1)!.

• Γ is uniformly convergent on any bounded interval [a, b] ⊂ (0,∞) but is not uniformly convergent on
(0,∞).

• Γ is continuous, differentiable on (0,∞).

• Γ is analytic at any x ∈ (0,∞). (not proven in class)

• Γ is an analytic extension of the function (n− 1)!.

4 Continuity of functions

4.1 Limits

Definition 34. Let f be a function defined on a neighborhood of a number a except possibly at a,

• lim
x→a

f(x) = L if ∀ε > 0,∃α > 0, if |x− a| < α, then |f(x)− L| < ε.

• lim
x→a

f(x) =∞ if ∀A > 0,∃α > 0, if |x− a| < α, then f(x) > A.

If f is defined on a neighborhood of ∞, (b,∞)

• lim
x→∞

f(x) = L if ∀ε > 0,∃X > b, if x > X, then |f(x)− L| < ε.

• lim
x→∞

f(x) =∞ if ∀A > 0,∃X > b, if x > X, then f(x) > A.

Theorem 35. Let f and g be two functions defined on a neighborhood of a real number a except possibly at
a, that have a limit at a.

• lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x).

• lim
x→a

(c. ∗ (x)) = c ∗ lim
x→a

f(x) where c is a real number.

• lim
x→a

(f(x) ∗ g(x)) = lim
x→a

f(x) ∗ lim
x→a

g(x).

• lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
if lim
x→a

g(x) 6= 0.

A similar theorem holds for limits at infinity.

Theorem 36. (Squeeze theorem)
Let f, g, h be 3 functions defined on a neighborhood of a. If f 6 g 6 h on a neighborhood of a and

lim
x→a

f(x) = lim
x→a

h(x) = l, then lim
x→a

g(x) exists and lim
x→a

g(x) = l
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4.2 Continuity

Definition 37. Let f be a function defined on a neighborhood of a number a, the function f is continuous at
a if

lim
x→a

f(x) = f(a)

Theorem 38. Let f and g be 2 functions defined on a neighborhood of a and continuous at a. then f + g,

f − g, f ∗ g,
f

g
is continuous at a provided that g(a) 6= 0 for the quotient.

Theorem 39. If f be a function defined on a neighborhood of a and continuous at a, and g is a function
defined in a neighborhood of f(a) and continuous at f(a) then Then g ◦ f is continuous at a.

4.3 Differentiability

Definition 40. Let f be a function defined on a neighborhood of a.

If the limit lim
x→a

f(x)− f(a)

x− a
exists and is finite, then the function f is differentiable at a and the derivative

at a of f , written f ′(a) or
df

dx
(a) is lim

x→a

f(x)− f(a)

x− a
.

Theorem 41. If f is differentiable at a, then f is continuous at a.

Theorem 42. (Chain rule) If f is a function differentiable at a and g is a function differentiable at f(a),
then g ◦ f is differentiable at a and (g ◦ f)′(a) = f ′(a) ∗ g′(f(a)).

4.4 Heine Borel Theorem

Definition 43. A collection of open sets A = {Uα, α ∈ I} is a cover by open sets of a set S if S ⊂ ∪α∈IUα .
A subcover is a subset of A that covers S.

Definition 44. A set S is compact if whenever S is covered by open sets {Uα, α ∈ I}, there exists a finite
subcover of S.

Theorem 45. (Heine-Borel Theorem) A set S is compact iff S is closed and bounded.

4.5 Theorems on continuous functions

Theorem 46. Let f be a function defined on a neighborhood of p.
f is continuous at p iff for any sequence xn convergent to p, the sequence f(xn) is convergent to f(p).

Theorem 47. Let S be a compact set.
If f is continuous on S, then f(S) is compact.

Theorem 48. ( Extreme Value Theorem) Let S be a non empty closed and bounded set (compact). and
a function f continuous on S.

If M,m are the least upper bound and greatest lower bound respectively, there exists xM and xm in S such
that f(xM ) = M and f(xm) = m.

Theorem 49. (Intermediate Value Theorem) Let f be continuous on an interval [a, b]. Assume that
f(a) 6= f(b),

For any y between f(a) and f(b), there exists a real c in (a, b) such that f(c) = y.
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4.6 Uniform continuity

Definition 50. Let f be a function defined on an interval I.
f is continuous on I iff

∀x ∈ I, ∀ε > 0,∃α > 0, if |x− t| < α =⇒ |f(x)− f(t)| < ε

f is uniformly continuous on I iff

∀ε > 0,∃α > 0,∀x ∈ I if |x− t| < α =⇒ |f(x)− f(t)| < ε

Example: The function f(x) = x2 is uniformly continuous on [0, 5) but is not uniformly continuous on R.

Theorem 51. If S is compact (closed and bounded) and f is a continuous function on S
then f is uniformly continuous on S.

5 Theory of integration

Definition 52. Given an interval [a, b], a partition of [a, b] is a finite collection of real numbers {xi} such that
a = x0 < x1 < x2 < · · · < xn = b

Definition 53. Let f be a bounded function on [a, b], {xi} be a partition of [a, b].
Let Mi and mi be the least upper bound and greatest lower bound of f on the interval [xi, xi+1].
We define the Riemann sums by

S =

n−1∑
i=0

(xi+1 − xi)Mi, and s =

n−1∑
i=0

(xi+1 − xi)mi

Proposition 54. When adding points to the partition, the Riemann sums S are decreasing and s are increasing.

Proposition 55. Let C1 and C2 be two partions of [a, b]. If S1 and s1 are the Rieman sums corresponding to
the partition C1 ,and S2 and s2 are the Riemann sums corresponding to C2, then S1 > s2

Definition 56. Let I be the greatest lower bound of S for all the possible partitions of [a, b] and J be the least
upper bound of s for all the possible partitions of [a, b].

Proposition 57. I > J

Definition 58. Given a bounded function f on an interval [a, b] If I = J , then the function f is integrable on

[a, b] and the definite integral

∫ b

a

f(t)dt = I = J

Theorem 59. A function f is integrable iff for any ε > 0 there exists a partition such that S − s < ε.

Theorem 60. If f is continuous on [a, b], then f is integrable on [a, b]

Theorem 61. (Theorem fundamental of calculus)

If f is continuous on [a, b] then the function F (x) =

∫ x

a

f(t)dt is differentiable on [a, b] and F ′(x) = f(x).

Theorem 62. Let f be a contiuous non negative function on an interval [a, b].

If
∫ b
a
f(t)]dt = 0, then the function f is 0 on the entire interval [a, b].
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